Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The spatial distribution of individuals within ecological assemblages and their associated traits and behaviors are key determinants of ecosystem structure and function. Consequently, determining the spatial distribution of species, and how distributions influence patterns of species richness across ecosystems today and in the past, helps us understand what factors act as fundamental controls on biodiversity. Here, we explore how ecological niche modeling has contributed to understanding the spatiotemporal distribution of past biodiversity and past ecological and evolutionary processes. We first perform a semiquantitative literature review to capture studies that applied ecological niche models (ENMs) to the past, identifying 668 studies. We coded each study according to focal taxonomic group, whether and how the study used fossil evidence, whether it relied on evidence or methods in addition to ENMs, spatial scale of the study, and temporal intervals included in the ENMs. We used trends in publication patterns across categories to anchor discussion of recent technical advances in niche modeling, focusing on paleobiogeographic ENM applications. We then explored contributions of ENMs to paleobiogeography, with a particular focus on examining patterns and associated drivers of range dynamics; phylogeography and within-lineage dynamics; macroevolutionary patterns and processes, including niche change, speciation, and extinction; drivers of community assembly; and conservation paleobiogeography. Overall, ENMs are powerful tools for elucidating paleobiogeographic patterns. ENMs are most commonly used to understand Quaternary dynamics, but an increasing number of studies use ENMs to gain important insight into both ecological and evolutionary processes in pre-Quaternary times. Deeper integration with traits and phylogenies may further extend those insights.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Climate and ecosystem dynamics vary across timescales, but research into climate-driven vegetation dynamics usually focuses on singular timescales. We developed a spectral analysis–based approach that provides detailed estimates of the timescales at which vegetation tracks climate change, from 101to 105years. We report dynamic similarity of vegetation and climate even at centennial frequencies (149−1to 18,012−1year−1, that is, one cycle per 149 to 18,012 years). A breakpoint in vegetation turnover (797−1year−1) matches a breakpoint between stochastic and autocorrelated climate processes, suggesting that ecological dynamics are governed by climate across these frequencies. Heightened vegetation turnover at millennial frequencies (4650−1year−1) highlights the risk of abrupt responses to climate change, whereas vegetation-climate decoupling at frequencies >149−1year−1may indicate long-lasting consequences of anthropogenic climate change for ecosystem function and biodiversity.more » « lessFree, publicly-accessible full text available July 3, 2026
-
This talk will describe the work of the CPN Pre-Impact Baselines Working Group to leverage the wealth of paleoecological and historical ecological data to facilitate estimation of pre-impact species distribution baselines. Species conservation has long focused on preventing human-driven extinctions, and over the past 50 years conservation success has been measured using changes in species’ extinction risk. However, recently calls have been made for a parallel focus on species recovery, and on developing metrics with which to assess its achievement. This call to action within the conservation community is fuelled in part by the recognition that baselines of species abundance and distribution have shifted dramatically across human generations with globally detectable human impacts on ecosystems beginning at least several thousand years ago. While assessment of extinction risk generally only considers species’ change over the past few decades, assessment of recovery requires considering change over centuries to millennia. This requires identifying the baseline status at the time when humans first became a major factor influencing the abundance and distribution of a species. Two new frameworks for considering conservation status relative to a species’ pre-impact baseline have been recently released: EPOCH (Evaluation of POpulation CHange), and the IUCN Green Status of Species. These frameworks have been lauded as moving conservation in a much-needed direction, but there is also concern about whether these methods will be applicable to any but a few well-known, charismatic species. Using a combination of modelling approaches, we are working to estimate species pre-impact distributions in a way that is accessible to conservation practitioners, helping to unshift the baseline and bring species recovery into the mainstream.more » « less
-
null (Ed.)Abstract Simulations are playing an increasingly important role in paleobiology. When designing a simulation study, many decisions have to be made and common challenges will be encountered along the way. Here, we outline seven rules for executing a good simulation study. We cover topics including the choice of study question, the empirical data used as a basis for the study, statistical and methodological concerns, how to validate the study, and how to ensure it can be reproduced and extended by others. We hope that these rules and the accompanying examples will guide paleobiologists when using simulation tools to address fundamental questions about the evolution of life.more » « less
-
The field of distributional ecology has seen considerable recent attention, particularly surrounding the theory, protocols, and tools for Ecological Niche Modeling (ENM) or Species Distribution Modeling (SDM). Such analyses have grown steadily over the past two decades—including a maturation of relevant theory and key concepts—but methodological consensus has yet to be reached. In response, and following an online course taught in Spanish in 2018, we designed a comprehensive English-language course covering much of the underlying theory and methods currently applied in this broad field. Here, we summarize that course, ENM2020, and provide links by which resources produced for it can be accessed into the future. ENM2020 lasted 43 weeks, with presentations from 52 instructors, who engaged with >2500 participants globally through >14,000 hours of viewing and >90,000 views of instructional video and question-and-answer sessions. Each major topic was introduced by an “Overview” talk, followed by more detailed lectures on subtopics. The hierarchical and modular format of the course permits updates, corrections, or alternative viewpoints, and generally facilitates revision and reuse, including the use of only the Overview lectures for introductory courses. All course materials are free and openly accessible (CC-BY license) to ensure these resources remain available to all interested in distributional ecology.more » « less
-
null (Ed.)Analyses of morphological disparity have been used to characterize and investigate the evolution of variation in the anatomy, function and ecology of organisms since the 1980s. While a diversity of methods have been employed, it is unclear whether they provide equivalent insights. Here, we review the most commonly used approaches for characterizing and analysing morphological disparity, all of which have associated limitations that, if ignored, can lead to misinterpretation. We propose best practice guidelines for disparity analyses, while noting that there can be no ‘one-size-fits-all’ approach. The available tools should always be used in the context of a specific biological question that will determine data and method selection at every stage of the analysis.more » « less
An official website of the United States government
